Separable Spatiotemporal Priors for Convex Reconstruction of Time-Varying 3D Point Clouds

نویسندگان

  • Tomas Simon
  • Jack Valmadre
  • Iain A. Matthews
  • Yaser Sheikh
چکیده

Reconstructing 3D motion data is highly under-constrained due to several common sources of data loss during measurement, such as projection, occlusion, or miscorrespondence. We present a statistical model of 3D motion data, based on the Kronecker structure of the spatiotemporal covariance of natural motion, as a prior on 3D motion. This prior is expressed as a matrix normal distribution, composed of separable and compact row and column covariances. We relate the marginals of the distribution to the shape, trajectory, and shape-trajectory models of prior art. When the marginal shape distribution is not available from training data, we show how placing a hierarchical prior over shapes results in a convex MAP solution in terms of the trace-norm. The matrix normal distribution, fit to a single sequence, outperforms state-of-the-art methods at reconstructing 3D motion data in the presence of significant data loss, while providing covariance estimates of the imputed points.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

3D Detection of Power-Transmission Lines in Point Clouds Using Random Forest Method

Inspection of power transmission lines using classic experts based methods suffers from disadvantages such as highel level of time and money consumption. Advent of UAVs and their application in aerial data gathering help to decrease the time and cost promenantly. The purpose of this research is to present an efficient automated method for inspection of power transmission lines based on point c...

متن کامل

Target detection Bridge Modelling using Point Cloud Segmentation Obtained from Photogrameric UAV

In recent years, great efforts have been made to generate 3D models of urban structures in photogrammetry and remote sensing. 3D reconstruction of the bridge, as one of the most important urban structures in transportation systems, has been neglected because of its geometric and structural complexity. Due to the UAV technology development in spatial data acquisition, in this study, the point cl...

متن کامل

Surface reconstruction with data-driven exemplar priors

In this paper, we propose a framework to reconstruct 3D models from raw scanned points by learning the prior knowledge of a specific class of objects. Unlike previous work that heuristically specifies particular regularities and defines parametric models, our shape priors are learned directly from existing 3D models under a framework based on affinity propagation. Given a database of 3D models ...

متن کامل

Accuracy Analysis of a Multi-View Stereo Approach for Phenotyping of Tomato Plants at the Organ Level

Accessing a plant's 3D geometry has become of significant importance for phenotyping during the last few years. Close-up laser scanning is an established method to acquire 3D plant shapes in real time with high detail, but it is stationary and has high investment costs. 3D reconstruction from images using structure from motion (SfM) and multi-view stereo (MVS) is a flexible cost-effective metho...

متن کامل

VASE: Volume-Aware Surface Evolution for Surface Reconstruction from Incomplete Point Clouds

Objects with many concavities are difficult to acquire using laser scanners. The highly concave areas are hard to access by a scanner due to occlusions by other components of the object. The resulting point scan typically suffers from large amounts of missing data. Methods that use surface-based priors rely on local surface estimates and perform well only when filling small holes. When the hole...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014